

Concrete with Recycled Concrete Aggregate: A Texas Case Study

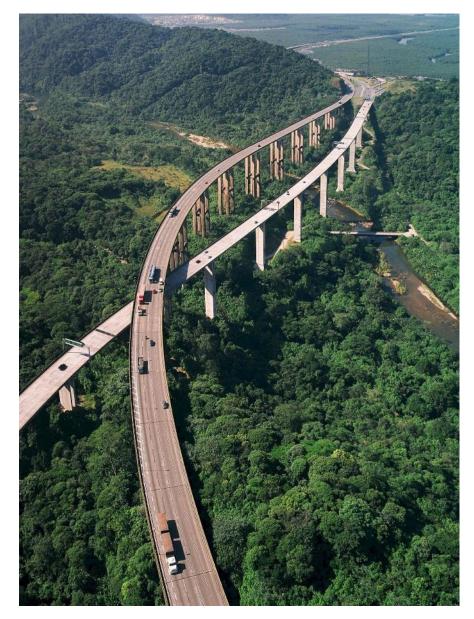
Gina Ahlstrom

PIARC US Representative and English-Speaking Secretary

TC 4.1 Road Pavements

Argentina

Sept. 22, 2021


- Motivation
- Approach
- Performance
- Key Outcomes

Federal Highway Administration The Federal Highway Administration (FHWA) does not endorse any entity and the appearance of our presentation material in this template should not be interpreted as an endorsement or statement exhibiting any preference, support, etc.

The contents of this presentation do not have the force and effect of law and are not meant to bind the U.S. public in any way. This presentation is intended only to provide clarity regarding existing requirements under the law or agency policies.

PIARC is the source of images unless otherwise noted.

Project Motivation

Texas in 1990s...

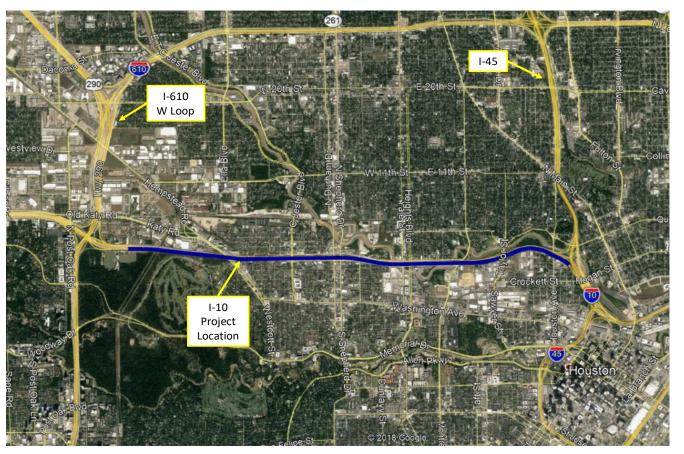

- Lack of local available aggregate
- Increase costs virgin materials
- Performance issues with virgin aggregates

Image: Pixabay; circle added.

Approach: Continuously Reinforced Concrete Pavement (CRCP) with Recycle Concrete Aggregate

- 1995 Reconstruct 5.8 mi of I-10
- 100% RCA in CRCP
 - Coarse
 - Fine
- 1st in USA

© 2018 Google Earth; Data: SIO, NOAA, US Navy, NGA, GEBCO, INEGI,

Pavement Sections

Typical Section 1

- 14-inch CRCP over 3-inch asphaltstabilized base
- 6 inch lime-treated subgrade
- 14-inch tied concrete shoulder (CRCP)
- Double mat longitudinal reinforcement
- 3/4th Project Length

Typical Section 2

- 11-inch CRCP overlay on 1-inch asphalt stabilized base
- over existing CRCP
- 11-inch tied concrete shoulder (CRCP)
- Single mat longitudinal reinforcement
- 1/4th Project Length

Concrete Mixture

- 6-sack (564 lbs/yd³)
 concrete mix
- RCA conformed to same aggregate specifications
- Controlled moisture RCA stockpile with sprinkler
- RCA fines limited to 20 percent

Material	Property	Test Method	RCA Test Result
	Specific gravity	ASTM C127	2.45 - 2.48
	Mortar content	_ 1	~ 30%
	Water absorption ASTM C127		3.9 - 4.1%
	Sodium soundness loss	ASTM C88	1 - 9%
Coarse Aggregate	Magnesium soundness loss ASTM C		1 - 4%
	LA abrasion	ASTM C131	32 - 38%
	Thermal coefficient	_ 1	16 - 26 με/°C
	Freeze-thaw loss	Tex-433C	11.5%
	Alkali-silica reactivity	ASTM C1260	0.023%
Fine Aggregate	Specific gravity	ASTM C128	2.37
	Water absorption	ASTM C128	7.9%
	Angularity	NAA Method	38.6%

Performance Testing

Sustainability Rating Systems (e.g., INVEST)

Performance Testing

Life-Cycle Assessment (LCA)

Performance Testing

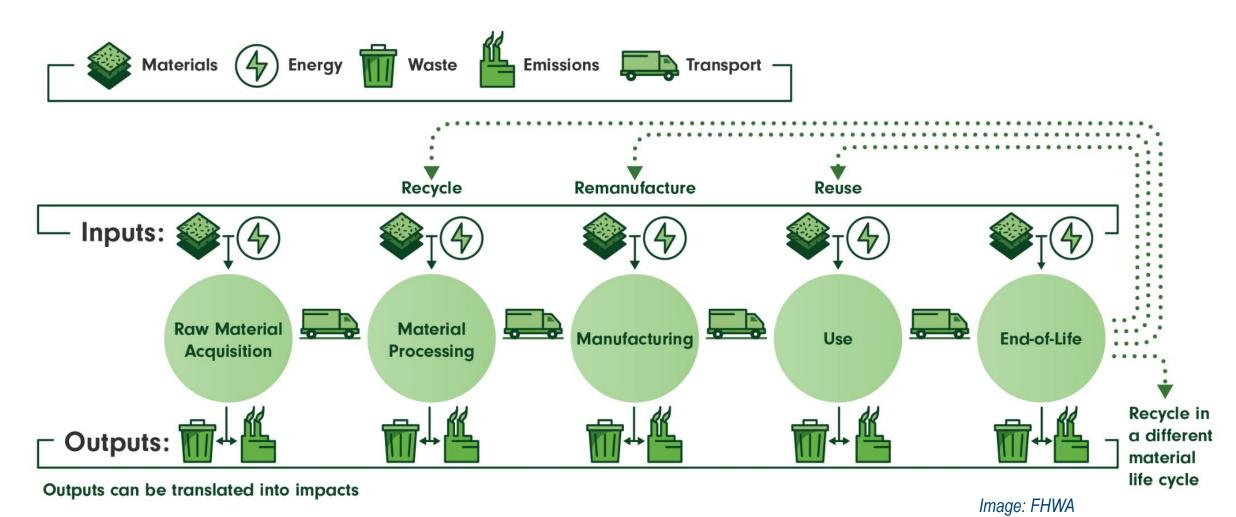
Life-Cycle Cost Analysis (LCCA)

Image Source: FHWA/APTech

LCA ≠ LCCA

 Life-cycle cost analysis (LCCA) evaluates lifecycle economic impacts

 Life-cycle assessment (LCA) quantifies lifecycle potential environmental impacts


LCA and LCCA One Pagers

Images: FHWA

Life Cycle Assessment - Quantifies Environmental Impacts

PIARC

Plastic vs. Paper

Images: Pixabay

Post Construction In-Situ Concrete Properties

In-situ Property	Method	Avg.	Range
Compressive strength, 28-day	-	4,615 lb/in ²	4,260 - 5,270 lb/in ²
Indirect tensile strength, 28-day	-	486 lb/in ²	415 – 535 lb/in ²
Modulus of elasticity	-	2.58 x 10 ⁶ lb/in ²	-
Coefficient of thermal expansion	Tex-428-A	-	4.7 – 5.3 με/°F
Chloride content	Tex-617J	1436 ppm	-
Sulfate content	Tex-620J	0.04 lb/yd ³	-
Density	-	2.24	2.19 – 2.36
Water absorption	ASTM C642	10.86%	-
Permeability	ASTM C1202	466 Coulomb	366 – 628 Coulomb

Sustainability Performance

Year	No. of Spalls	No. of Punchouts	No. of PCC Patches ¹	Avg. IRI (in/mi)
2011	9	4	1	115
2012	1	3	3	119
2013	1	0	0	119
2014	3	4	5	113
2015	2	7	1	120
2016	8	5	1	116

 Outperforming CRCP with local virgin aggregate

Approximate Savings:

- \$1.4M
- 207,750 tons VirginAggregate
- 1,268,387 CO₂eq Global Warming Potential

Key Outcomes

- 100% RCA CRCP
 - Performed 10+ years of service
 - Limit fines 20%
 - RCA moisture control
- RCA Sustainability Benefits
 - Reduced Costs (landfill and virgin materials)
 - Reduced Depletion of virgin materials
 - Reduced Global Warming Potential
- Important to Quantify Sustainability Benefits

IMPROVING PAVEMENT SUSTAINABILITY THROUGH THINK GREEN REDUCE, REUSE, RECYCLE - REDUCE the use of virgin resources As quality resources are existing pavement structures REUSE depleted, it is to the extent possible important to: pavement materials even more aggressively in new and rehabilitated pavement structures ENVIRONMENTAL reduced energy of reclaimed asphalt consumption & emissions avement produced in 2018 ECONOMIC: reduced pavement About 140 million construction costs tons of recycled concrete aggregate produced annually SOCIAL: PIAR

Image: FHWA

https://www.fhwa.dot.gov/pavement/sustainability

Vision and Mission

Advance the knowledge and practice of designing, constructing, and maintaining more sustainable pavement through:

- Stakeholder engagement
- Education
- Development of guidance and tools

Sustainable Pavement Program Resources

Images: FHWA

Deployment

Pavement LCA Framework

LCA fit in transportation decision-making

Research

LCAPave Tool

Webinars

EPDs in Green Public Procurement

Pilot projects with State DOTs

Tech briefs, one-pagers

LCA of recycled plastics in pavements

Mobile Pavement Technologies Centers

Technical articles

LCA of ground tire rubber in pavements

Informing pre-engineering with ICE Tool

Thank you for your attention!

Gina Ahlstrom

Gina.ahlstrom@dot.gov

PIARC Secretary General

patrick.mallejacq@piarc.org

@PMallejacq

World Road Association (PIARC)
Grande Arche – Paroi Sud – 5°étage
92055 – La Défense Cedex – France

@PIARC_Roads

World Road
Association PIARC

World Road
Association PIARC

www.piarc.org

